π Auto Scaling in TuskLang - Bash Guide
Auto Scaling in TuskLang - Bash Guide
π Revolutionary Auto Scaling Configuration
Auto scaling in TuskLang transforms your configuration files into intelligent, self-managing scaling systems. No more manual scaling or rigid thresholdsβeverything lives in your TuskLang configuration with dynamic resource monitoring, intelligent scaling decisions, and comprehensive scaling analytics.
> "We don't bow to any king" β TuskLang auto scaling breaks free from traditional scaling constraints and brings modern elasticity to your Bash applications.
π Core Auto Scaling Directives
Basic Auto Scaling Setup
#auto-scaling: enabled # Enable auto scaling
#as-enabled: true # Alternative syntax
#as-min-instances: 2 # Minimum instances
#as-max-instances: 10 # Maximum instances
#as-target-cpu: 70 # Target CPU utilization
#as-scale-up-cooldown: 300 # Scale up cooldown (seconds)
#as-scale-down-cooldown: 600 # Scale down cooldown (seconds)
Advanced Auto Scaling Configuration
#as-metrics: cpu,memory,network # Scaling metrics
#as-predictive: true # Enable predictive scaling
#as-scheduled: true # Enable scheduled scaling
#as-mixed-instances: true # Enable mixed instance types
#as-monitoring: true # Enable scaling monitoring
#as-notifications: true # Enable scaling notifications
π§ Bash Auto Scaling Implementation
Basic Auto Scaler
#!/bin/bashLoad auto scaling configuration
source <(tsk load auto-scaling.tsk)Auto scaling configuration
AS_ENABLED="${as_enabled:-true}"
AS_MIN_INSTANCES="${as_min_instances:-2}"
AS_MAX_INSTANCES="${as_max_instances:-10}"
AS_TARGET_CPU="${as_target_cpu:-70}"
AS_SCALE_UP_COOLDOWN="${as_scale_up_cooldown:-300}"
AS_SCALE_DOWN_COOLDOWN="${as_scale_down_cooldown:-600}"Auto scaler
class AutoScaler {
constructor() {
this.enabled = AS_ENABLED
this.minInstances = AS_MIN_INSTANCES
this.maxInstances = AS_MAX_INSTANCES
this.targetCPU = AS_TARGET_CPU
this.scaleUpCooldown = AS_SCALE_UP_COOLDOWN
this.scaleDownCooldown = AS_SCALE_DOWN_COOLDOWN
this.instances = []
this.lastScaleUp = 0
this.lastScaleDown = 0
this.stats = {
scale_ups: 0,
scale_downs: 0,
instances_created: 0,
instances_terminated: 0
}
}
checkScaling() {
if (!this.enabled) return
const currentInstances = this.instances.length
const currentCPU = this.getAverageCPU()
// Check if scaling is needed
if (currentCPU > this.targetCPU && currentInstances < this.maxInstances) {
this.scaleUp()
} else if (currentCPU < this.targetCPU * 0.5 && currentInstances > this.minInstances) {
this.scaleDown()
}
}
scaleUp() {
const now = Date.now()
if (now - this.lastScaleUp < this.scaleUpCooldown * 1000) return
const newInstance = this.createInstance()
if (newInstance) {
this.instances.push(newInstance)
this.lastScaleUp = now
this.stats.scale_ups++
this.stats.instances_created++
this.sendNotification('scale_up', newInstance)
}
}
scaleDown() {
const now = Date.now()
if (now - this.lastScaleDown < this.scaleDownCooldown * 1000) return
const instanceToTerminate = this.selectInstanceToTerminate()
if (instanceToTerminate) {
this.terminateInstance(instanceToTerminate)
this.instances = this.instances.filter(inst => inst.id !== instanceToTerminate.id)
this.lastScaleDown = now
this.stats.scale_downs++
this.stats.instances_terminated++
this.sendNotification('scale_down', instanceToTerminate)
}
}
getAverageCPU() {
if (this.instances.length === 0) return 0
const totalCPU = this.instances.reduce((sum, instance) => sum + instance.cpu, 0)
return totalCPU / this.instances.length
}
createInstance() {
// Implementation for instance creation
return { id: Date.now(), cpu: 0 }
}
terminateInstance(instance) {
// Implementation for instance termination
}
selectInstanceToTerminate() {
// Select instance with lowest load
return this.instances.reduce((min, instance) =>
instance.cpu < min.cpu ? instance : min
)
}
sendNotification(type, instance) {
// Implementation for scaling notification
}
getStats() {
return { ...this.stats }
}
}Initialize auto scaler
const autoScaler = new AutoScaler()
Dynamic Resource Monitoring
#!/bin/bashDynamic resource monitoring
monitor_resources() {
local monitoring_file="/var/log/auto-scaling/resources.json"
# Collect resource metrics
local cpu_usage=$(get_cpu_usage)
local memory_usage=$(get_memory_usage)
local disk_usage=$(get_disk_usage)
local network_usage=$(get_network_usage)
local active_instances=$(get_active_instances)
# Generate resource report
cat > "$monitoring_file" << EOF
{
"timestamp": "$(date -Iseconds)",
"cpu_usage_percent": $cpu_usage,
"memory_usage_percent": $memory_usage,
"disk_usage_percent": $disk_usage,
"network_usage_mbps": $network_usage,
"active_instances": $active_instances,
"scaling_recommendation": "$(get_scaling_recommendation $cpu_usage $memory_usage $active_instances)"
}
EOF
echo "β Resource monitoring completed"
}get_cpu_usage() {
# Get CPU usage percentage
top -bn1 | grep "Cpu(s)" | awk '{print $2}' | cut -d'%' -f1
}
get_memory_usage() {
# Get memory usage percentage
free | awk 'NR==2{printf "%.2f", $3*100/$2}'
}
get_disk_usage() {
# Get disk usage percentage
df / | awk 'NR==2{print $5}' | sed 's/%//'
}
get_network_usage() {
# Get network usage in Mbps
local rx_bytes=$(cat /proc/net/dev | grep eth0 | awk '{print $2}')
local tx_bytes=$(cat /proc/net/dev | grep eth0 | awk '{print $10}')
local total_bytes=$((rx_bytes + tx_bytes))
echo "scale=2; $total_bytes / 1024 / 1024" | bc -l
}
get_active_instances() {
# Count active instances
local instance_count=0
# Check for running containers
if command -v docker >/dev/null 2>&1; then
instance_count=$(docker ps --format "table {{.Names}}" | wc -l)
instance_count=$((instance_count - 1)) # Subtract header
fi
# Check for running processes
local process_count=$(pgrep -c -f "application")
instance_count=$((instance_count + process_count))
echo "$instance_count"
}
get_scaling_recommendation() {
local cpu_usage="$1"
local memory_usage="$2"
local active_instances="$3"
local target_cpu="${as_target_cpu:-70}"
local min_instances="${as_min_instances:-2}"
local max_instances="${as_max_instances:-10}"
if [[ $(echo "$cpu_usage > $target_cpu" | bc -l) -eq 1 ]] && [[ $active_instances -lt $max_instances ]]; then
echo "scale_up"
elif [[ $(echo "$cpu_usage < $((target_cpu / 2))" | bc -l) -eq 1 ]] && [[ $active_instances -gt $min_instances ]]; then
echo "scale_down"
else
echo "maintain"
fi
}
Intelligent Scaling Decisions
#!/bin/bashIntelligent scaling decisions
make_scaling_decision() {
local recommendation="$1"
local current_instances="$2"
local min_instances="${as_min_instances:-2}"
local max_instances="${as_max_instances:-10}"
local scale_up_cooldown="${as_scale_up_cooldown:-300}"
local scale_down_cooldown="${as_scale_down_cooldown:-600}"
case "$recommendation" in
"scale_up")
if can_scale_up "$current_instances" "$max_instances" "$scale_up_cooldown"; then
scale_up_instance
return 0
fi
;;
"scale_down")
if can_scale_down "$current_instances" "$min_instances" "$scale_down_cooldown"; then
scale_down_instance
return 0
fi
;;
"maintain")
echo "β Maintaining current instance count: $current_instances"
return 0
;;
esac
return 1
}can_scale_up() {
local current_instances="$1"
local max_instances="$2"
local cooldown="$3"
local last_scale_up_file="/tmp/last_scale_up"
# Check instance limit
if [[ $current_instances -ge $max_instances ]]; then
echo "Cannot scale up: at maximum instances ($max_instances)"
return 1
fi
# Check cooldown period
if [[ -f "$last_scale_up_file" ]]; then
local last_scale_up=$(cat "$last_scale_up_file")
local current_time=$(date +%s)
local time_since_scale_up=$((current_time - last_scale_up))
if [[ $time_since_scale_up -lt $cooldown ]]; then
echo "Cannot scale up: in cooldown period ($((cooldown - time_since_scale_up))s remaining)"
return 1
fi
fi
return 0
}
can_scale_down() {
local current_instances="$1"
local min_instances="$2"
local cooldown="$3"
local last_scale_down_file="/tmp/last_scale_down"
# Check instance limit
if [[ $current_instances -le $min_instances ]]; then
echo "Cannot scale down: at minimum instances ($min_instances)"
return 1
fi
# Check cooldown period
if [[ -f "$last_scale_down_file" ]]; then
local last_scale_down=$(cat "$last_scale_down_file")
local current_time=$(date +%s)
local time_since_scale_down=$((current_time - last_scale_down))
if [[ $time_since_scale_down -lt $cooldown ]]; then
echo "Cannot scale down: in cooldown period ($((cooldown - time_since_scale_down))s remaining)"
return 1
fi
fi
return 0
}
scale_up_instance() {
local instance_type="${as_instance_type:-t3.micro}"
local instance_name="app-instance-$(date +%s)"
echo "Scaling up: Creating new instance ($instance_type)"
# Create new instance (example with Docker)
if command -v docker >/dev/null 2>&1; then
docker run -d --name "$instance_name" \
-p 8080:8080 \
--restart unless-stopped \
your-application-image
if [[ $? -eq 0 ]]; then
echo "$(date +%s)" > "/tmp/last_scale_up"
log_scaling_event "scale_up" "$instance_name" "success"
echo "β Instance created successfully: $instance_name"
else
log_scaling_event "scale_up" "$instance_name" "failed"
echo "β Failed to create instance: $instance_name"
fi
else
echo "Docker not available for instance creation"
return 1
fi
}
scale_down_instance() {
echo "Scaling down: Terminating instance"
# Find instance to terminate (lowest load)
local instance_to_terminate=$(select_instance_to_terminate)
if [[ -n "$instance_to_terminate" ]]; then
# Terminate instance (example with Docker)
if command -v docker >/dev/null 2>&1; then
docker stop "$instance_to_terminate"
docker rm "$instance_to_terminate"
if [[ $? -eq 0 ]]; then
echo "$(date +%s)" > "/tmp/last_scale_down"
log_scaling_event "scale_down" "$instance_to_terminate" "success"
echo "β Instance terminated successfully: $instance_to_terminate"
else
log_scaling_event "scale_down" "$instance_to_terminate" "failed"
echo "β Failed to terminate instance: $instance_to_terminate"
fi
else
echo "Docker not available for instance termination"
return 1
fi
else
echo "No suitable instance found for termination"
return 1
fi
}
select_instance_to_terminate() {
# Select instance with lowest load
if command -v docker >/dev/null 2>&1; then
docker ps --format "table {{.Names}}" | grep "app-instance" | head -n 1
fi
}
Predictive Scaling
#!/bin/bashPredictive scaling
predictive_scaling() {
local prediction_window="${as_prediction_window:-3600}" # 1 hour
local historical_data_file="/var/log/auto-scaling/historical.json"
# Analyze historical patterns
local predicted_load=$(analyze_historical_patterns "$historical_data_file" "$prediction_window")
local current_instances=$(get_active_instances)
local target_instances=$(calculate_target_instances "$predicted_load")
echo "Predicted load: $predicted_load"
echo "Current instances: $current_instances"
echo "Target instances: $target_instances"
# Scale based on prediction
if [[ $target_instances -gt $current_instances ]]; then
local instances_to_add=$((target_instances - current_instances))
echo "Predictive scaling: Adding $instances_to_add instances"
for ((i=1; i<=instances_to_add; i++)); do
scale_up_instance
done
elif [[ $target_instances -lt $current_instances ]]; then
local instances_to_remove=$((current_instances - target_instances))
echo "Predictive scaling: Removing $instances_to_remove instances"
for ((i=1; i<=instances_to_remove; i++)); do
scale_down_instance
done
fi
}analyze_historical_patterns() {
local data_file="$1"
local window="$2"
if [[ -f "$data_file" ]]; then
# Analyze historical data for patterns
local average_load=$(jq -r '.average_load' "$data_file" 2>/dev/null || echo "50")
echo "$average_load"
else
echo "50" # Default prediction
fi
}
calculate_target_instances() {
local predicted_load="$1"
local base_instances="${as_min_instances:-2}"
local max_instances="${as_max_instances:-10}"
# Calculate target instances based on predicted load
local target_instances=$((base_instances + (predicted_load / 20)))
# Ensure within bounds
if [[ $target_instances -lt $base_instances ]]; then
target_instances=$base_instances
elif [[ $target_instances -gt $max_instances ]]; then
target_instances=$max_instances
fi
echo "$target_instances"
}
Scheduled Scaling
#!/bin/bashScheduled scaling
scheduled_scaling() {
local schedule_file="${as_schedule_file:-/etc/auto-scaling/schedule.conf}"
if [[ -f "$schedule_file" ]]; then
local current_time=$(date '+%H:%M')
local current_day=$(date '+%A')
while IFS= read -r schedule_line; do
local day="${schedule_line%:*}"
local time_config="${schedule_line#*:}"
if [[ "$day" == "$current_day" ]] || [[ "$day" == "daily" ]]; then
IFS=',' read -r time instances <<< "$time_config"
if [[ "$time" == "$current_time" ]]; then
scale_to_instances "$instances"
break
fi
fi
done < "$schedule_file"
fi
}scale_to_instances() {
local target_instances="$1"
local current_instances=$(get_active_instances)
echo "Scheduled scaling: Target $target_instances instances (current: $current_instances)"
if [[ $target_instances -gt $current_instances ]]; then
local instances_to_add=$((target_instances - current_instances))
for ((i=1; i<=instances_to_add; i++)); do
scale_up_instance
done
elif [[ $target_instances -lt $current_instances ]]; then
local instances_to_remove=$((current_instances - target_instances))
for ((i=1; i<=instances_to_remove; i++)); do
scale_down_instance
done
fi
}
Scaling Analytics
#!/bin/bashScaling analytics
scaling_analytics() {
local analytics_file="/var/log/auto-scaling/analytics.json"
local scaling_log="/var/log/auto-scaling/scaling.log"
# Collect scaling statistics
local total_scale_ups=$(grep -c "scale_up.*success" "$scaling_log" 2>/dev/null || echo 0)
local total_scale_downs=$(grep -c "scale_down.*success" "$scaling_log" 2>/dev/null || echo 0)
local total_failures=$(grep -c "failed" "$scaling_log" 2>/dev/null || echo 0)
local current_instances=$(get_active_instances)
local average_response_time=$(calculate_average_response_time)
# Generate analytics report
cat > "$analytics_file" << EOF
{
"timestamp": "$(date -Iseconds)",
"total_scale_ups": $total_scale_ups,
"total_scale_downs": $total_scale_downs,
"total_failures": $total_failures,
"current_instances": $current_instances,
"average_response_time_ms": $average_response_time,
"scaling_efficiency": "$(calculate_scaling_efficiency $total_scale_ups $total_failures)"
}
EOF
echo "β Scaling analytics generated"
}calculate_average_response_time() {
# Calculate average response time across instances
local total_response_time=0
local response_count=0
if command -v docker >/dev/null 2>&1; then
while IFS= read -r container; do
if [[ -n "$container" ]]; then
local response_time=$(measure_container_response_time "$container")
total_response_time=$((total_response_time + response_time))
response_count=$((response_count + 1))
fi
done < <(docker ps --format "{{.Names}}" | grep "app-instance")
fi
if [[ $response_count -gt 0 ]]; then
echo $((total_response_time / response_count))
else
echo "0"
fi
}
measure_container_response_time() {
local container="$1"
# Measure response time using curl
local start_time=$(date +%s%N)
if docker exec "$container" curl -s --max-time 5 http://localhost:8080/health >/dev/null 2>&1; then
local end_time=$(date +%s%N)
local response_time=$(((end_time - start_time) / 1000000)) # Convert to milliseconds
echo "$response_time"
else
echo "999999" # High penalty for failed requests
fi
}
calculate_scaling_efficiency() {
local scale_ups="$1"
local failures="$2"
local total_operations=$((scale_ups + failures))
if [[ $total_operations -gt 0 ]]; then
local success_rate=$((scale_ups * 100 / total_operations))
if [[ $success_rate -ge 90 ]]; then
echo "excellent"
elif [[ $success_rate -ge 75 ]]; then
echo "good"
elif [[ $success_rate -ge 50 ]]; then
echo "fair"
else
echo "poor"
fi
else
echo "unknown"
fi
}
log_scaling_event() {
local event_type="$1"
local instance_name="$2"
local status="$3"
local scaling_log="/var/log/auto-scaling/scaling.log"
echo "$(date '+%Y-%m-%d %H:%M:%S') | $event_type | $instance_name | $status" >> "$scaling_log"
}
π― Real-World Configuration Examples
Complete Auto Scaling Configuration
auto-scaling-config.tsk
auto_scaling_config:
enabled: true
min_instances: 2
max_instances: 10
target_cpu: 70
scale_up_cooldown: 300
scale_down_cooldown: 600#auto-scaling: enabled
#as-enabled: true
#as-min-instances: 2
#as-max-instances: 10
#as-target-cpu: 70
#as-scale-up-cooldown: 300
#as-scale-down-cooldown: 600
#as-metrics: cpu,memory,network
#as-predictive: true
#as-scheduled: true
#as-mixed-instances: true
#as-monitoring: true
#as-notifications: true
#as-config:
general:
min_instances: 2
max_instances: 10
target_cpu: 70
scale_up_cooldown: 300
scale_down_cooldown: 600
metrics:
cpu:
enabled: true
threshold: 70
memory:
enabled: true
threshold: 80
network:
enabled: true
threshold: 1000
predictive:
enabled: true
prediction_window: 3600
historical_data: "/var/log/auto-scaling/historical.json"
scheduled:
enabled: true
schedule_file: "/etc/auto-scaling/schedule.conf"
mixed_instances:
enabled: true
types:
- "t3.micro"
- "t3.small"
- "t3.medium"
monitoring:
enabled: true
interval: 60
metrics:
- "instance_count"
- "cpu_usage"
- "response_time"
notifications:
enabled: true
channels:
slack:
webhook: "${SLACK_WEBHOOK}"
channel: "#auto-scaling"
email:
recipients: ["ops@example.com"]
smtp_server: "smtp.example.com"
Multi-Tier Auto Scaling
multi-tier-auto-scaling.tsk
multi_tier_auto_scaling:
tiers:
- name: web
min_instances: 2
max_instances: 10
target_cpu: 70
- name: api
min_instances: 3
max_instances: 15
target_cpu: 60
- name: worker
min_instances: 1
max_instances: 5
target_cpu: 80#as-web: 2:10:70
#as-api: 3:15:60
#as-worker: 1:5:80
#as-config:
tiers:
web:
min_instances: 2
max_instances: 10
target_cpu: 70
instance_type: "t3.micro"
api:
min_instances: 3
max_instances: 15
target_cpu: 60
instance_type: "t3.small"
worker:
min_instances: 1
max_instances: 5
target_cpu: 80
instance_type: "t3.medium"
π¨ Troubleshooting Auto Scaling
Common Issues and Solutions
1. Auto Scaling Issues
Debug auto scaling
debug_auto_scaling() {
echo "Debugging auto scaling..."
monitor_resources
scaling_analytics
echo "Auto scaling debug completed"
}
2. Scaling Decision Issues
Debug scaling decisions
debug_scaling_decisions() {
local cpu_usage=$(get_cpu_usage)
local memory_usage=$(get_memory_usage)
local active_instances=$(get_active_instances)
echo "Current metrics:"
echo " CPU: ${cpu_usage}%"
echo " Memory: ${memory_usage}%"
echo " Instances: $active_instances"
local recommendation=$(get_scaling_recommendation "$cpu_usage" "$memory_usage" "$active_instances")
echo "Scaling recommendation: $recommendation"
}
π Security Best Practices
Auto Scaling Security Checklist
Security validation
validate_auto_scaling_security() {
echo "Validating auto scaling security configuration..."
# Check instance security groups
if [[ "${as_security_groups}" == "true" ]]; then
echo "β Instance security groups enabled"
else
echo "β Instance security groups not enabled"
fi
# Check instance encryption
if [[ "${as_instance_encryption}" == "true" ]]; then
echo "β Instance encryption enabled"
else
echo "β Instance encryption not enabled"
fi
# Check access controls
if [[ "${as_access_controls}" == "true" ]]; then
echo "β Auto scaling access controls enabled"
else
echo "β Auto scaling access controls not enabled"
fi
}
π Performance Optimization Tips
Auto Scaling Performance Checklist
Performance validation
validate_auto_scaling_performance() {
echo "Validating auto scaling performance configuration..."
# Check scaling cooldowns
local scale_up_cooldown="${as_scale_up_cooldown:-300}" # seconds
if [[ "$scale_up_cooldown" -ge 60 ]]; then
echo "β Reasonable scale up cooldown ($scale_up_cooldown s)"
else
echo "β Short scale up cooldown may cause thrashing ($scale_up_cooldown s)"
fi
local scale_down_cooldown="${as_scale_down_cooldown:-600}" # seconds
if [[ "$scale_down_cooldown" -ge 300 ]]; then
echo "β Reasonable scale down cooldown ($scale_down_cooldown s)"
else
echo "β Short scale down cooldown may cause thrashing ($scale_down_cooldown s)"
fi
# Check predictive scaling
if [[ "${as_predictive}" == "true" ]]; then
echo "β Predictive scaling enabled"
else
echo "β Predictive scaling not enabled"
fi
}
π― Next Steps
- Auto Scaling Optimization: Learn about advanced auto scaling optimization - Auto Scaling Visualization: Create auto scaling visualization dashboards - Auto Scaling Correlation: Implement auto scaling correlation and alerting - Auto Scaling Compliance: Set up auto scaling compliance and auditing
---
Auto scaling transforms your TuskLang configuration into an intelligent, self-managing scaling system. It brings modern elasticity to your Bash applications with dynamic resource monitoring, intelligent scaling decisions, and comprehensive scaling analytics!