🐚 Auto Scaling in TuskLang - Bash Guide

Bash Documentation

Auto Scaling in TuskLang - Bash Guide

πŸ“ˆ Revolutionary Auto Scaling Configuration

Auto scaling in TuskLang transforms your configuration files into intelligent, self-managing scaling systems. No more manual scaling or rigid thresholdsβ€”everything lives in your TuskLang configuration with dynamic resource monitoring, intelligent scaling decisions, and comprehensive scaling analytics.

> "We don't bow to any king" – TuskLang auto scaling breaks free from traditional scaling constraints and brings modern elasticity to your Bash applications.

πŸš€ Core Auto Scaling Directives

Basic Auto Scaling Setup

#auto-scaling: enabled                 # Enable auto scaling
#as-enabled: true                     # Alternative syntax
#as-min-instances: 2                  # Minimum instances
#as-max-instances: 10                 # Maximum instances
#as-target-cpu: 70                    # Target CPU utilization
#as-scale-up-cooldown: 300           # Scale up cooldown (seconds)
#as-scale-down-cooldown: 600         # Scale down cooldown (seconds)

Advanced Auto Scaling Configuration

#as-metrics: cpu,memory,network       # Scaling metrics
#as-predictive: true                  # Enable predictive scaling
#as-scheduled: true                   # Enable scheduled scaling
#as-mixed-instances: true             # Enable mixed instance types
#as-monitoring: true                  # Enable scaling monitoring
#as-notifications: true               # Enable scaling notifications

πŸ”§ Bash Auto Scaling Implementation

Basic Auto Scaler

#!/bin/bash

Load auto scaling configuration

source <(tsk load auto-scaling.tsk)

Auto scaling configuration

AS_ENABLED="${as_enabled:-true}" AS_MIN_INSTANCES="${as_min_instances:-2}" AS_MAX_INSTANCES="${as_max_instances:-10}" AS_TARGET_CPU="${as_target_cpu:-70}" AS_SCALE_UP_COOLDOWN="${as_scale_up_cooldown:-300}" AS_SCALE_DOWN_COOLDOWN="${as_scale_down_cooldown:-600}"

Auto scaler

class AutoScaler { constructor() { this.enabled = AS_ENABLED this.minInstances = AS_MIN_INSTANCES this.maxInstances = AS_MAX_INSTANCES this.targetCPU = AS_TARGET_CPU this.scaleUpCooldown = AS_SCALE_UP_COOLDOWN this.scaleDownCooldown = AS_SCALE_DOWN_COOLDOWN this.instances = [] this.lastScaleUp = 0 this.lastScaleDown = 0 this.stats = { scale_ups: 0, scale_downs: 0, instances_created: 0, instances_terminated: 0 } } checkScaling() { if (!this.enabled) return const currentInstances = this.instances.length const currentCPU = this.getAverageCPU() // Check if scaling is needed if (currentCPU > this.targetCPU && currentInstances < this.maxInstances) { this.scaleUp() } else if (currentCPU < this.targetCPU * 0.5 && currentInstances > this.minInstances) { this.scaleDown() } } scaleUp() { const now = Date.now() if (now - this.lastScaleUp < this.scaleUpCooldown * 1000) return const newInstance = this.createInstance() if (newInstance) { this.instances.push(newInstance) this.lastScaleUp = now this.stats.scale_ups++ this.stats.instances_created++ this.sendNotification('scale_up', newInstance) } } scaleDown() { const now = Date.now() if (now - this.lastScaleDown < this.scaleDownCooldown * 1000) return const instanceToTerminate = this.selectInstanceToTerminate() if (instanceToTerminate) { this.terminateInstance(instanceToTerminate) this.instances = this.instances.filter(inst => inst.id !== instanceToTerminate.id) this.lastScaleDown = now this.stats.scale_downs++ this.stats.instances_terminated++ this.sendNotification('scale_down', instanceToTerminate) } } getAverageCPU() { if (this.instances.length === 0) return 0 const totalCPU = this.instances.reduce((sum, instance) => sum + instance.cpu, 0) return totalCPU / this.instances.length } createInstance() { // Implementation for instance creation return { id: Date.now(), cpu: 0 } } terminateInstance(instance) { // Implementation for instance termination } selectInstanceToTerminate() { // Select instance with lowest load return this.instances.reduce((min, instance) => instance.cpu < min.cpu ? instance : min ) } sendNotification(type, instance) { // Implementation for scaling notification } getStats() { return { ...this.stats } } }

Initialize auto scaler

const autoScaler = new AutoScaler()

Dynamic Resource Monitoring

#!/bin/bash

Dynamic resource monitoring

monitor_resources() { local monitoring_file="/var/log/auto-scaling/resources.json" # Collect resource metrics local cpu_usage=$(get_cpu_usage) local memory_usage=$(get_memory_usage) local disk_usage=$(get_disk_usage) local network_usage=$(get_network_usage) local active_instances=$(get_active_instances) # Generate resource report cat > "$monitoring_file" << EOF { "timestamp": "$(date -Iseconds)", "cpu_usage_percent": $cpu_usage, "memory_usage_percent": $memory_usage, "disk_usage_percent": $disk_usage, "network_usage_mbps": $network_usage, "active_instances": $active_instances, "scaling_recommendation": "$(get_scaling_recommendation $cpu_usage $memory_usage $active_instances)" } EOF echo "βœ“ Resource monitoring completed" }

get_cpu_usage() { # Get CPU usage percentage top -bn1 | grep "Cpu(s)" | awk '{print $2}' | cut -d'%' -f1 }

get_memory_usage() { # Get memory usage percentage free | awk 'NR==2{printf "%.2f", $3*100/$2}' }

get_disk_usage() { # Get disk usage percentage df / | awk 'NR==2{print $5}' | sed 's/%//' }

get_network_usage() { # Get network usage in Mbps local rx_bytes=$(cat /proc/net/dev | grep eth0 | awk '{print $2}') local tx_bytes=$(cat /proc/net/dev | grep eth0 | awk '{print $10}') local total_bytes=$((rx_bytes + tx_bytes)) echo "scale=2; $total_bytes / 1024 / 1024" | bc -l }

get_active_instances() { # Count active instances local instance_count=0 # Check for running containers if command -v docker >/dev/null 2>&1; then instance_count=$(docker ps --format "table {{.Names}}" | wc -l) instance_count=$((instance_count - 1)) # Subtract header fi # Check for running processes local process_count=$(pgrep -c -f "application") instance_count=$((instance_count + process_count)) echo "$instance_count" }

get_scaling_recommendation() { local cpu_usage="$1" local memory_usage="$2" local active_instances="$3" local target_cpu="${as_target_cpu:-70}" local min_instances="${as_min_instances:-2}" local max_instances="${as_max_instances:-10}" if [[ $(echo "$cpu_usage > $target_cpu" | bc -l) -eq 1 ]] && [[ $active_instances -lt $max_instances ]]; then echo "scale_up" elif [[ $(echo "$cpu_usage < $((target_cpu / 2))" | bc -l) -eq 1 ]] && [[ $active_instances -gt $min_instances ]]; then echo "scale_down" else echo "maintain" fi }

Intelligent Scaling Decisions

#!/bin/bash

Intelligent scaling decisions

make_scaling_decision() { local recommendation="$1" local current_instances="$2" local min_instances="${as_min_instances:-2}" local max_instances="${as_max_instances:-10}" local scale_up_cooldown="${as_scale_up_cooldown:-300}" local scale_down_cooldown="${as_scale_down_cooldown:-600}" case "$recommendation" in "scale_up") if can_scale_up "$current_instances" "$max_instances" "$scale_up_cooldown"; then scale_up_instance return 0 fi ;; "scale_down") if can_scale_down "$current_instances" "$min_instances" "$scale_down_cooldown"; then scale_down_instance return 0 fi ;; "maintain") echo "βœ“ Maintaining current instance count: $current_instances" return 0 ;; esac return 1 }

can_scale_up() { local current_instances="$1" local max_instances="$2" local cooldown="$3" local last_scale_up_file="/tmp/last_scale_up" # Check instance limit if [[ $current_instances -ge $max_instances ]]; then echo "Cannot scale up: at maximum instances ($max_instances)" return 1 fi # Check cooldown period if [[ -f "$last_scale_up_file" ]]; then local last_scale_up=$(cat "$last_scale_up_file") local current_time=$(date +%s) local time_since_scale_up=$((current_time - last_scale_up)) if [[ $time_since_scale_up -lt $cooldown ]]; then echo "Cannot scale up: in cooldown period ($((cooldown - time_since_scale_up))s remaining)" return 1 fi fi return 0 }

can_scale_down() { local current_instances="$1" local min_instances="$2" local cooldown="$3" local last_scale_down_file="/tmp/last_scale_down" # Check instance limit if [[ $current_instances -le $min_instances ]]; then echo "Cannot scale down: at minimum instances ($min_instances)" return 1 fi # Check cooldown period if [[ -f "$last_scale_down_file" ]]; then local last_scale_down=$(cat "$last_scale_down_file") local current_time=$(date +%s) local time_since_scale_down=$((current_time - last_scale_down)) if [[ $time_since_scale_down -lt $cooldown ]]; then echo "Cannot scale down: in cooldown period ($((cooldown - time_since_scale_down))s remaining)" return 1 fi fi return 0 }

scale_up_instance() { local instance_type="${as_instance_type:-t3.micro}" local instance_name="app-instance-$(date +%s)" echo "Scaling up: Creating new instance ($instance_type)" # Create new instance (example with Docker) if command -v docker >/dev/null 2>&1; then docker run -d --name "$instance_name" \ -p 8080:8080 \ --restart unless-stopped \ your-application-image if [[ $? -eq 0 ]]; then echo "$(date +%s)" > "/tmp/last_scale_up" log_scaling_event "scale_up" "$instance_name" "success" echo "βœ“ Instance created successfully: $instance_name" else log_scaling_event "scale_up" "$instance_name" "failed" echo "βœ— Failed to create instance: $instance_name" fi else echo "Docker not available for instance creation" return 1 fi }

scale_down_instance() { echo "Scaling down: Terminating instance" # Find instance to terminate (lowest load) local instance_to_terminate=$(select_instance_to_terminate) if [[ -n "$instance_to_terminate" ]]; then # Terminate instance (example with Docker) if command -v docker >/dev/null 2>&1; then docker stop "$instance_to_terminate" docker rm "$instance_to_terminate" if [[ $? -eq 0 ]]; then echo "$(date +%s)" > "/tmp/last_scale_down" log_scaling_event "scale_down" "$instance_to_terminate" "success" echo "βœ“ Instance terminated successfully: $instance_to_terminate" else log_scaling_event "scale_down" "$instance_to_terminate" "failed" echo "βœ— Failed to terminate instance: $instance_to_terminate" fi else echo "Docker not available for instance termination" return 1 fi else echo "No suitable instance found for termination" return 1 fi }

select_instance_to_terminate() { # Select instance with lowest load if command -v docker >/dev/null 2>&1; then docker ps --format "table {{.Names}}" | grep "app-instance" | head -n 1 fi }

Predictive Scaling

#!/bin/bash

Predictive scaling

predictive_scaling() { local prediction_window="${as_prediction_window:-3600}" # 1 hour local historical_data_file="/var/log/auto-scaling/historical.json" # Analyze historical patterns local predicted_load=$(analyze_historical_patterns "$historical_data_file" "$prediction_window") local current_instances=$(get_active_instances) local target_instances=$(calculate_target_instances "$predicted_load") echo "Predicted load: $predicted_load" echo "Current instances: $current_instances" echo "Target instances: $target_instances" # Scale based on prediction if [[ $target_instances -gt $current_instances ]]; then local instances_to_add=$((target_instances - current_instances)) echo "Predictive scaling: Adding $instances_to_add instances" for ((i=1; i<=instances_to_add; i++)); do scale_up_instance done elif [[ $target_instances -lt $current_instances ]]; then local instances_to_remove=$((current_instances - target_instances)) echo "Predictive scaling: Removing $instances_to_remove instances" for ((i=1; i<=instances_to_remove; i++)); do scale_down_instance done fi }

analyze_historical_patterns() { local data_file="$1" local window="$2" if [[ -f "$data_file" ]]; then # Analyze historical data for patterns local average_load=$(jq -r '.average_load' "$data_file" 2>/dev/null || echo "50") echo "$average_load" else echo "50" # Default prediction fi }

calculate_target_instances() { local predicted_load="$1" local base_instances="${as_min_instances:-2}" local max_instances="${as_max_instances:-10}" # Calculate target instances based on predicted load local target_instances=$((base_instances + (predicted_load / 20))) # Ensure within bounds if [[ $target_instances -lt $base_instances ]]; then target_instances=$base_instances elif [[ $target_instances -gt $max_instances ]]; then target_instances=$max_instances fi echo "$target_instances" }

Scheduled Scaling

#!/bin/bash

Scheduled scaling

scheduled_scaling() { local schedule_file="${as_schedule_file:-/etc/auto-scaling/schedule.conf}" if [[ -f "$schedule_file" ]]; then local current_time=$(date '+%H:%M') local current_day=$(date '+%A') while IFS= read -r schedule_line; do local day="${schedule_line%:*}" local time_config="${schedule_line#*:}" if [[ "$day" == "$current_day" ]] || [[ "$day" == "daily" ]]; then IFS=',' read -r time instances <<< "$time_config" if [[ "$time" == "$current_time" ]]; then scale_to_instances "$instances" break fi fi done < "$schedule_file" fi }

scale_to_instances() { local target_instances="$1" local current_instances=$(get_active_instances) echo "Scheduled scaling: Target $target_instances instances (current: $current_instances)" if [[ $target_instances -gt $current_instances ]]; then local instances_to_add=$((target_instances - current_instances)) for ((i=1; i<=instances_to_add; i++)); do scale_up_instance done elif [[ $target_instances -lt $current_instances ]]; then local instances_to_remove=$((current_instances - target_instances)) for ((i=1; i<=instances_to_remove; i++)); do scale_down_instance done fi }

Scaling Analytics

#!/bin/bash

Scaling analytics

scaling_analytics() { local analytics_file="/var/log/auto-scaling/analytics.json" local scaling_log="/var/log/auto-scaling/scaling.log" # Collect scaling statistics local total_scale_ups=$(grep -c "scale_up.*success" "$scaling_log" 2>/dev/null || echo 0) local total_scale_downs=$(grep -c "scale_down.*success" "$scaling_log" 2>/dev/null || echo 0) local total_failures=$(grep -c "failed" "$scaling_log" 2>/dev/null || echo 0) local current_instances=$(get_active_instances) local average_response_time=$(calculate_average_response_time) # Generate analytics report cat > "$analytics_file" << EOF { "timestamp": "$(date -Iseconds)", "total_scale_ups": $total_scale_ups, "total_scale_downs": $total_scale_downs, "total_failures": $total_failures, "current_instances": $current_instances, "average_response_time_ms": $average_response_time, "scaling_efficiency": "$(calculate_scaling_efficiency $total_scale_ups $total_failures)" } EOF echo "βœ“ Scaling analytics generated" }

calculate_average_response_time() { # Calculate average response time across instances local total_response_time=0 local response_count=0 if command -v docker >/dev/null 2>&1; then while IFS= read -r container; do if [[ -n "$container" ]]; then local response_time=$(measure_container_response_time "$container") total_response_time=$((total_response_time + response_time)) response_count=$((response_count + 1)) fi done < <(docker ps --format "{{.Names}}" | grep "app-instance") fi if [[ $response_count -gt 0 ]]; then echo $((total_response_time / response_count)) else echo "0" fi }

measure_container_response_time() { local container="$1" # Measure response time using curl local start_time=$(date +%s%N) if docker exec "$container" curl -s --max-time 5 http://localhost:8080/health >/dev/null 2>&1; then local end_time=$(date +%s%N) local response_time=$(((end_time - start_time) / 1000000)) # Convert to milliseconds echo "$response_time" else echo "999999" # High penalty for failed requests fi }

calculate_scaling_efficiency() { local scale_ups="$1" local failures="$2" local total_operations=$((scale_ups + failures)) if [[ $total_operations -gt 0 ]]; then local success_rate=$((scale_ups * 100 / total_operations)) if [[ $success_rate -ge 90 ]]; then echo "excellent" elif [[ $success_rate -ge 75 ]]; then echo "good" elif [[ $success_rate -ge 50 ]]; then echo "fair" else echo "poor" fi else echo "unknown" fi }

log_scaling_event() { local event_type="$1" local instance_name="$2" local status="$3" local scaling_log="/var/log/auto-scaling/scaling.log" echo "$(date '+%Y-%m-%d %H:%M:%S') | $event_type | $instance_name | $status" >> "$scaling_log" }

🎯 Real-World Configuration Examples

Complete Auto Scaling Configuration

auto-scaling-config.tsk

auto_scaling_config: enabled: true min_instances: 2 max_instances: 10 target_cpu: 70 scale_up_cooldown: 300 scale_down_cooldown: 600

#auto-scaling: enabled #as-enabled: true #as-min-instances: 2 #as-max-instances: 10 #as-target-cpu: 70 #as-scale-up-cooldown: 300 #as-scale-down-cooldown: 600

#as-metrics: cpu,memory,network #as-predictive: true #as-scheduled: true #as-mixed-instances: true #as-monitoring: true #as-notifications: true

#as-config:

general:

min_instances: 2

max_instances: 10

target_cpu: 70

scale_up_cooldown: 300

scale_down_cooldown: 600

metrics:

cpu:

enabled: true

threshold: 70

memory:

enabled: true

threshold: 80

network:

enabled: true

threshold: 1000

predictive:

enabled: true

prediction_window: 3600

historical_data: "/var/log/auto-scaling/historical.json"

scheduled:

enabled: true

schedule_file: "/etc/auto-scaling/schedule.conf"

mixed_instances:

enabled: true

types:

- "t3.micro"

- "t3.small"

- "t3.medium"

monitoring:

enabled: true

interval: 60

metrics:

- "instance_count"

- "cpu_usage"

- "response_time"

notifications:

enabled: true

channels:

slack:

webhook: "${SLACK_WEBHOOK}"

channel: "#auto-scaling"

email:

recipients: ["ops@example.com"]

smtp_server: "smtp.example.com"

Multi-Tier Auto Scaling

multi-tier-auto-scaling.tsk

multi_tier_auto_scaling: tiers: - name: web min_instances: 2 max_instances: 10 target_cpu: 70 - name: api min_instances: 3 max_instances: 15 target_cpu: 60 - name: worker min_instances: 1 max_instances: 5 target_cpu: 80

#as-web: 2:10:70 #as-api: 3:15:60 #as-worker: 1:5:80

#as-config:

tiers:

web:

min_instances: 2

max_instances: 10

target_cpu: 70

instance_type: "t3.micro"

api:

min_instances: 3

max_instances: 15

target_cpu: 60

instance_type: "t3.small"

worker:

min_instances: 1

max_instances: 5

target_cpu: 80

instance_type: "t3.medium"

🚨 Troubleshooting Auto Scaling

Common Issues and Solutions

1. Auto Scaling Issues

Debug auto scaling

debug_auto_scaling() { echo "Debugging auto scaling..." monitor_resources scaling_analytics echo "Auto scaling debug completed" }

2. Scaling Decision Issues

Debug scaling decisions

debug_scaling_decisions() { local cpu_usage=$(get_cpu_usage) local memory_usage=$(get_memory_usage) local active_instances=$(get_active_instances) echo "Current metrics:" echo " CPU: ${cpu_usage}%" echo " Memory: ${memory_usage}%" echo " Instances: $active_instances" local recommendation=$(get_scaling_recommendation "$cpu_usage" "$memory_usage" "$active_instances") echo "Scaling recommendation: $recommendation" }

πŸ”’ Security Best Practices

Auto Scaling Security Checklist

Security validation

validate_auto_scaling_security() { echo "Validating auto scaling security configuration..." # Check instance security groups if [[ "${as_security_groups}" == "true" ]]; then echo "βœ“ Instance security groups enabled" else echo "⚠ Instance security groups not enabled" fi # Check instance encryption if [[ "${as_instance_encryption}" == "true" ]]; then echo "βœ“ Instance encryption enabled" else echo "⚠ Instance encryption not enabled" fi # Check access controls if [[ "${as_access_controls}" == "true" ]]; then echo "βœ“ Auto scaling access controls enabled" else echo "⚠ Auto scaling access controls not enabled" fi }

πŸ“ˆ Performance Optimization Tips

Auto Scaling Performance Checklist

Performance validation

validate_auto_scaling_performance() { echo "Validating auto scaling performance configuration..." # Check scaling cooldowns local scale_up_cooldown="${as_scale_up_cooldown:-300}" # seconds if [[ "$scale_up_cooldown" -ge 60 ]]; then echo "βœ“ Reasonable scale up cooldown ($scale_up_cooldown s)" else echo "⚠ Short scale up cooldown may cause thrashing ($scale_up_cooldown s)" fi local scale_down_cooldown="${as_scale_down_cooldown:-600}" # seconds if [[ "$scale_down_cooldown" -ge 300 ]]; then echo "βœ“ Reasonable scale down cooldown ($scale_down_cooldown s)" else echo "⚠ Short scale down cooldown may cause thrashing ($scale_down_cooldown s)" fi # Check predictive scaling if [[ "${as_predictive}" == "true" ]]; then echo "βœ“ Predictive scaling enabled" else echo "⚠ Predictive scaling not enabled" fi }

🎯 Next Steps

- Auto Scaling Optimization: Learn about advanced auto scaling optimization - Auto Scaling Visualization: Create auto scaling visualization dashboards - Auto Scaling Correlation: Implement auto scaling correlation and alerting - Auto Scaling Compliance: Set up auto scaling compliance and auditing

---

Auto scaling transforms your TuskLang configuration into an intelligent, self-managing scaling system. It brings modern elasticity to your Bash applications with dynamic resource monitoring, intelligent scaling decisions, and comprehensive scaling analytics!